Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464164

RESUMO

The COVID-19 pandemic persists despite the availability of vaccines, and it is therefore crucial to develop new therapeutic and preventive approaches. In this study, we investigated the potential role of the oral microbiome in SARS-CoV-2 infection. Using an in vitro SARS-CoV-2 pseudovirus infection assay, we found a potent inhibitory effect exerted by Porphyromonas gingivalis on SARS-CoV-2 infection mediated by known P. gingivalis compounds such as phosphoglycerol dihydroceramide (PGDHC) and gingipains as well as by unknown bacterial factors. We found that the gingipain-mediated inhibition of infection is likely due to cytotoxicity, while PGDHC inhibited virus infection by an unknown mechanism. Unidentified factors present in P. gingivalis supernatant inhibited SARS-CoV-2 likely via the fusion step of the virus life cycle. We addressed the role of other oral bacteria and found certain periodontal pathogens capable of inhibiting SARS-CoV-2 pseudovirus infection by inducing cytotoxicity on target cells. In the human oral cavity, we observed the modulatory activity of oral microbial communities varied among individuals in that some saliva-based cultures were capable of inhibiting while others were enhancing infection. These findings contribute to our understanding of the complex relationship between the oral microbiome and viral infections, offering potential avenues for innovative therapeutic strategies in combating COVID-19.

2.
J Cell Mol Med ; 27(9): 1290-1295, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37016912

RESUMO

The maintenance of diminished acid ceramidase (ASAH1) gene expression leading to the accumulation of antiproliferative intracellular ceramides in oral squamous cell carcinoma (OSCC) has emerged as a prospective oral cancer therapeutic regimen. Our published study demonstrated that the key periodontal pathogen Porphyromonas gingivalis downregulates the expression patterns of ASAH1 mRNA in normal epithelial cells in vitro. Therefore, P. gingivalis may also beneficially diminish the expression of ASAH1 in OSCC. Because a uniquely structured P. gingivalis-derived phosphoethanolamine dihydroceramide (PEDHC) inhibits the proliferation of normal human fibroblasts, this study aimed to test the effect of PEDHC on the survival of human oral squamous OECM-1 cells in vitro. We demonstrated that the P. gingivalis dihydroceramide-null (ΔPG1780) strain upregulates the expression of ASAH1 mRNA and promotes aggressive proliferation and migration of OECM-1 cells compared to the parent P. gingivalis-W83 strain. In addition, the intracellular concentration of ceramides was dramatically elevated in OECM-1 cells exposed to PEDHC in vitro. Furthermore, PEDHC inhibited expression patterns of ASAH1 mRNA as well as some genes associated with degradation of the basement membranes and extracellular matrix, for example, MMP-2, ADAM-17 and IL-6, in OECM-1 cells. Altogether, these data indicated that PEDHC produced by P. gingivalis inhibits acid ceramidase expression, promotes intracellular ceramide accumulation and suppresses the survival and migration of OSCC cells in vitro. Further studies are needed to determine molecular mechanisms of PEDHC-mediated inhibitory effect(s) on OSCC using in vivo models of oral cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Porphyromonas gingivalis , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Ceramidase Ácida/genética , Estudos Prospectivos , Células Epiteliais/metabolismo , Ceramidas , Carcinoma de Células Escamosas de Cabeça e Pescoço
3.
Pathogens ; 11(9)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36145414

RESUMO

Studies are showing that the stress hormone cortisol can reach high levels in the gingival sulcus and induce shifts in the metatranscriptome of the oral microbiome. Interestingly, it has also been shown that cortisol can influence expression levels of Type IX Secretion System (T9SS) genes involved in gliding motility in bacteria belonging to the phylum Bacteroidota. The objective of this study was to determine if cortisol impacts gene expression and surface translocation of Porphyromonas gingivalis strain W50. To conduct these experiments, P. gingivalis was stabbed to the bottom of soft agar plates containing varying cortisol concentrations (0 µM, 0.13 µM, 1.3 µM, and 13 µM), and surface translocation on the subsurface was observed after 48 h of incubation. The results show that when grown with certain nutrients, i.e., in rich medium with the addition of sheep blood, lactate, or pyruvate, cortisol promotes migration of P. gingivalis in a concentration-dependent manner. To begin to examine the underlying mechanisms, quantitative PCR was used to evaluate differential expression of genes when P. gingivalis was exposed to cortisol. In particular, we focused on differential expression of T9SS-associated genes, including mfa5, since it was previously shown that Mfa5 is required for cell movement and cell-to-cell interactions. The data show that mfa5 is significantly up-regulated in the presence of cortisol. Moreover, an mfa5 deletion mutant showed less surface translocation compared to the wild-type P. gingivalis in the presence of cortisol, and the defects of the mfa5 deletion mutant were restored by complementation. Overall, cortisol can stimulate P. gingivalis surface translocation and this coincides with higher expression levels of T9SS-associated genes, which are known to be essential to gliding motility. Our findings support a high possibility that the stress hormone cortisol from the host can promote surface translocation and potentially virulence of P. gingivalis.

4.
Front Oral Health ; 2: 686402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35048031

RESUMO

Periodontal diseases are chronic inflammatory diseases of the periodontium that result in progressive destruction of the soft and hard tissues supporting the teeth, and it is the most common cause of tooth loss among adults. In the US alone, over 100 million individuals are estimated to have periodontal disease. Subgingival bacteria initiate and sustain inflammation, and, although several bacteria have been associated with periodontitis, Porphyromonas gingivalis has emerged as the key etiological organism significantly contributing to the disease. Currently, intensive clinical maintenance strategies are deployed to mitigate the further progression of disease in afflicted individuals; however, these treatments often fail to stop disease progression, and, as such, the development of an effective vaccine for periodontal disease is highly desirable. We generated a conjugate vaccine, comprising of the purified capsular polysaccharide of P. gingivalis conjugated to eCRM®, a proprietary and enhanced version of the CRM197 carrier protein with predetermined conjugation sites (Pg-CV). Mice immunized with alum adjuvanted Pg-CV developed robust serum levels of whole organism-specific IgG in comparison to animals immunized with unconjugated capsular polysaccharide alone. Using the murine oral bone loss model, we observed that mice immunized with the capsule-conjugate vaccine were significantly protected from the effects of P. gingivalis-elicited oral bone loss. Employing a preclinical model of infection-elicited oral bone loss, our data support that a conjugate vaccine incorporating capsular polysaccharide antigen is effective in reducing the main clinical endpoint of periodontal disease-oral bone destruction. Further development of a P. gingivalis capsule-based conjugate vaccine for preventing periodontal diseases is supported.

5.
ISME J ; 13(6): 1560-1574, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30783212

RESUMO

Our understanding of how oral microbiota adapt in response to changes in their surroundings remains limited. This is particularly true of the slow-growing anaerobes that persist below the gum line. Here, we report that the oral anaerobe Porphyromonas gingivalis strain 381 can surface translocate when sandwiched between two surfaces. We show that during movement, this bacterium alters its metabolism, specifically side products of arginine utilization including citrulline and ornithine accumulated in the translocating cells; while arginine, N-acetyl-arginine, and the polyamine putrescine, which is produced from arginine were consumed. In addition, our results indicate that movement requires modification of the surrounding environment via proteolysis, cell dispersion, cell-on-cell rolling, and sub-diffusive cell-driven motility. We also show that production of fimbriae and fimbriae-associated proteins; as well as the regulation of contact-dependent growth inhibition genes, which are known to be involved in self-nonself discrimination, and the type IX secretion system are central to surface translocation. These studies provide a first glimpse into P. gingivalis motility and its relationship to ecological variables.


Assuntos
Aminoácidos/metabolismo , Porphyromonas gingivalis/fisiologia , Agentes Molhantes/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Porphyromonas gingivalis/genética
6.
Sci Rep ; 7(1): 17686, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247187

RESUMO

Oral squamous cell carcinomas are a major cause of morbidity and mortality, and tobacco usage, alcohol consumption, and poor oral hygiene are established risk factors. To date, no large-scale case-control studies have considered the effects of these risk factors on the composition of the oral microbiome, nor microbial community associations with oral cancer. We compared the composition, diversity, and function of the oral microbiomes of 121 oral cancer patients to 242 age- and gender-matched controls using a metagenomic multivariate analysis pipeline. Significant shifts in composition and function of the oral microbiome were observed with poor oral hygiene, tobacco smoking, and oral cancer. Specifically, we observed dramatically altered community composition and function after tooth loss, with smaller alterations in current tobacco smokers, increased production of antioxidants in individuals with periodontitis, and significantly decreased glutamate metabolism metal transport in oral cancer patients. Although the alterations in the oral microbiome of oral cancer patients were significant, they were of substantially lower effect size relative to microbiome shifts after tooth loss. Alterations following tooth loss, itself a major risk factor for oral cancer, are likely a result of severe ecological disruption due to habitat loss but may also contribute to the development of the disease.


Assuntos
Bactérias/patogenicidade , Microbiota/fisiologia , Neoplasias Bucais/etiologia , Neoplasias Bucais/microbiologia , Neoplasias Orofaríngeas/etiologia , Neoplasias Orofaríngeas/microbiologia , Idoso , Consumo de Bebidas Alcoólicas/efeitos adversos , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/microbiologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Higiene Bucal/efeitos adversos , Fatores de Risco , Fumar/efeitos adversos , Uso de Tabaco/efeitos adversos , Perda de Dente/etiologia , Perda de Dente/microbiologia
8.
Microbiology (Reading) ; 143 ( Pt 12): 3913-3919, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9421915

RESUMO

Genomic DNA was isolated from the active layer of tundra soil collected from the Kolyma lowland, Northeast Eurasia, near the Arctic Ocean coast. The SSU (small subunit) rRNA genes were amplified with eubacterial primers from the bulk genomic community DNA and cloned into plasmid vectors. Forty-three SSU rDNA clones were obtained, and all of them had different RFLP patterns. Phylogenetic analysis based on partial sequences (about 300 bp) established with the maximum likelihood method revealed the presence of three major and several minor groups that fell into 11 of the established lines of bacteria, and one sequence that could not be assigned to any of the described groups. Most of the clones belonged to the alpha (20.9%) and delta (25.6%) subdivisions of the Proteobacteria, with lesser proportions in the beta (9.3%) and gamma (4.7%) subdivisions, groups typically isolated from soil by culture methods. Fewer than 12% of the clones belonged to Gram-positive bacteria, and 16% of the clones were related to Fibrobacter. The majority of the clones (70%) had sequences that were 5-15% different from those in the current databases, and 7% of the clones had sequences that differed by more than 20% from those in the database. The results suggest that these tundra-derived clones are very diverse in phylogeny, and that many probably reflect new genera or families. Hence, most of the tundra soil bacterial community has never been isolated and thus the physiology and function of its dominant members appears to be unknown.


Assuntos
Bactérias/classificação , Filogenia , Microbiologia do Solo , Regiões Árticas , Bactérias/genética , Bactérias/isolamento & purificação , Sequência de Bases , Clonagem Molecular , Clima Frio , Primers do DNA , DNA Ribossômico/genética , Variação Genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Bacteriano/genética , Sibéria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...